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Abstract—This paper presents a cost-effective method for re-
constructing the magnetic field distribution (MFD) from measured
data of an electromagnetic mechatronic system (EMS). MFD pre-
dictions and measurements for model-based force/torque calcula-
tion and magnetic sensors are common problems in EMS where
permanent magnets (PMs) and/or electromagnets are employed. In
this method, the MFD is reconstructed in the current-free space by
solving the Laplace’s equation of a magnetic scalar potential with
measured boundary conditions (BCs). The reconstruction method,
which relaxes the assumption of known magnetic structures com-
monly made in the magnetic models for design analysis, requires
only the normal component of the magnetic flux density on its
boundary surface. Two practical applications are given to illus-
trate the reconstruction method. The first example illustrates the
reconstruction of the MFD from published data of a spherical ro-
tor with embedded PMs for a ball-joint-like motor, where the MFD
is essential for the Lorentz force computation. The second exam-
ple reconstructs the MFD in a circular pipe of an electromagnetic
flowmeter, where the MFD is essential for the sensitivity compu-
tation. Both reconstructions have been experimentally validated
by comparing the MFD against measured data. Both comparisons
show excellent agreements. In addition, a gradient-based data dis-
tribution on MFD is also discussed to illustrate how the BCs are
employed for the reconstruction process.

Index Terms—Electromagnetic, flowmeter, magnetic field, mea-
sured boundary condition (BC), mechatronic system, reconstruc-
tion, spherical motor.

I. INTRODUCTION

MAGNETIC fields have been widely used in a spectrum
of electromagnetic mechatronic systems (EMSs), which

include multi-DOF actuators [1], sensors [1]–[3], precision mo-
tion stages [4], bearing [5], [6], fluid velocity probe [7], [8],
flowmeter [9], and MRI devices [10]. The inherent existence of
the 3-D magnetic field distribution (MFD) in the EMS, however,
is often underexploited due to the difficulty to experimentally
characterize (or to perform periodic calibration) the 3-D field
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once the system is fabricated. Traditionally, MFD measurements
primarily rely on single-point magnetic sensors (such as a Hall
sensor). Although single-point sensors are inexpensive and ca-
pable of very high-resolution measurement, their uses to cover
the whole working space require an additional positioning de-
vice [11], [12]. Thus, 3-D MFD measurements are generally
tedious, time-consuming, and costly. Recent advance in math-
ematical modeling, computational algorithms, and mechatron-
ics (that integrate computer, communication, and control) have
provided a rationale basis to exploit computational models as a
computer-aided experimental approach to characterize the MFD
of an EMS. For this reason, this paper presents a cost-effective
computational method to derive the MFD from measured data
on its boundary surface.

MFD predictions and measurements for model-based
force/torque calculation and magnetic sensors are common
problems in EMS where PMs and/or EMs are employed. MFD
problems may be formulated in two opposing ways (or forward
and inverse models). The forward model analyzes the effect of
a given cause. Conversely, the inverse model defines the causes
of a prescribed or measured effect; in mechatronics, it addresses
two important MFD subproblems. The first subproblem (also
popularly known as design optimization) is to seek a solution
(for the purpose of designing a device) in order to meet a spec-
ified behavior and/or an optimal performance. The second sub-
problem (also known as calibration, system identification, and
parameter estimation) aims at reconstructing information on a
mathematical model of the system from given data. Unlike the
first subproblem where the solution may not exist because data
are assumed arbitrary in synthesis, the second subproblem uses
data from measurements, and is the focus of this paper.

Although MFD problems have been studied for decades,
most traditional methods have focused on solving the for-
ward model for a given design. For systems with geometri-
cally simple exciting units (such as circular and square air-
cored coils [8], or orderly arranged PMs with known polarized
magnetic strengths [11], Maxwell’s equations can be appropri-
ately simplified and analytically solved for the magnetic fields
in the working space. These methods include the assumed flux
path approximation [13], analytic methods [11], [14], dipole
closed-form solutions [1], [15], and finite-element method [16],
where the MFD was solved for calculating the torque of a
3-DOF spherical motor. More recently, interests to derive op-
timal synergy between electromagnetic and mechanical design
have motivated a number of researchers to develop methods for
computationally efficient design optimization [15], [17]–[19]
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and motion control applications [16], [20] where computation
must be performed in real time.

Actual magnetic structures, however, may differ from the
computer-aided design (CAD) models (due to fabrication tol-
erances and inherent nonlinear material properties). Physically
accurate MFD, which is essential for model validation, sys-
tem calibration, identification, and parameter estimation in an
EMS, can be determined only from the measured data. The
torque model of a three-DOF spherical motor was experimen-
tally obtained in [20] to account for the effect of MFD using an
energy-based lumped-parameter approach. The method [20] as-
sumes that the electromagnetic structure of the system is known.
More recently, dipole models have been developed for incor-
porating measured MFD data in the multi-DOF actuators and
sensors [1], [15].

It has been shown in [7] and [12] that the magnetic field in the
current-free working space around an electromagnetic velocity
probe can be reconstructed using only the normal component
of the magnetic flux density on the boundary surface. In [7]
and [12], where numerical and analytical methods are provided,
respectively, experimental realization of the MFD reconstruc-
tion was conducted for a specific velocity probe. This paper
further develops the reconstruction method so that the method
can be applied to a broader range of EMS applications, where
the electromechanical energy conversion generally takes place
in the field near, but outside, the physical region of the exciting
units. The remainder of this paper offers the followings.

1) The paper presents a method based on measured bound-
ary condition (BC) to obtain physically accurate (yet cost-
effective) MFD from measured data in the working space.
This method, which relaxes the assumption of known mag-
netic structures commonly made in the forward models or
optimal design problems, only requires the normal compo-
nent of the magnetic flux density on its boundary surface.
Different from [7] and [12], where only Neumann BCs
(NBCs) were used, the method presented here considers
all kinds of BCs including Neumann, Dirichlet, and their
combination. In addition, we highlight the mathematical
insights, physical interpretations, and measurement con-
siderations of typical BCs commonly encountered in EMS
applications.

2) Two practical applications with relatively complex elec-
tromagnetic structures are given to illustrate the recon-
struction method: a permanent magnet (PM) based spher-
ical motor and an electromagnet (EM) flowmeter. For a
spherical motor, the reconstructed MFD provides the basis
for computing the magnetic torques from the Lorentz force
equation. The MFD of an EM flowmeter provides the ba-
sis for computing its sensitivity (dry calibration) based on
the electromagnetic flow-measurement theory [21]. Un-
like an EM velocity probe [7] and [12] that measures the
local velocity at a point inside a pipe, the EM flowmeter
offers unobstructed measurements of the average velocity
of the flow passing through the pipe. The reconstruction
task is different from [7] and [12] in that the magnetic
field inside the flowmeter is reconstructed from measured

data on the inner surface of the pipe, but not outside of the
probe surface.

3) The MFD reconstruction method has been validated in
both applications (spherical motor and flowmeter) by com-
paring the reconstructed MFDs against measured data. As
will be shown, both comparisons show excellent agree-
ments.

4) The effect of reduced measured BC data (based on gradient
information) on the MFD is discussed.

While the reconstruction method illustrated here is in the con-
text of electromagnetic fields, the procedure introduced in this
paper can be extended to other physical field (such as thermal
and electrical) based mechatronic systems, as long as the field
obeys similar governing equations (such as Laplace and Poisson
equations) with measurable BCs.

II. PRINCIPLE OF THE RECONSTRUCTION APPROACH

The term “reconstruction” is defined here as a coupled
measurement–calculation approach that derives the magnetic
field in a working space from measured data on its boundary
surface. For a current free (J = 0) working space, the magne-
tostatic field can be characterized by the Maxwell’s equations
as

∇× H = 0 (1a)

and

∇ · B = 0 (1b)

where H and B are the magnetic field intensity and flux density,
respectively. In this case, a magnetic scalar potential ψ can be
defined, from which H and B are derived through the expressions
(2a) and (2b), respectively

H = −∇ψ (2a)

and

B = −µ∇ψ (2b)

where µ is the magnetic permeability of the material in the
working spaces. According to (1b) and (2b), the potential ψ
obeys the Laplace’s equation as

∇2ψ = 0. (3)

In physics, any field whose potential obeys (3) is free and can
be uniquely determined by the field condition on the boundary
surface, which may take one of the three forms.

1) Dirichlet BC specifies the potential ψ at the boundary
surface.

2) NBC specifies the derivative of ψ at the boundary surface.
3) Mixed BC specifies DBC in some boundary surfaces and

NBC on the remainder.
In theory, any one form of the aforementioned BCs can be

used to completely specify the field condition on the boundary
surface for solving the Laplace’s equation (3), and along with
(2a) or (2b), the corresponding H or B field distributions in the
working space can be solved mathematically. However, as will
be discussed, the choice of appropriate BCs is often limited
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Fig. 1. Physical meaning of NBC.

by measurements, and thus, the following are implementation
considerations for cost-effective field reconstruction.

1) The potential ψ is immeasurable in practice. With few
exceptions (such as magnetically ground surface or remote
far field), knowing its distribution on the boundary surface
is nearly impossible. Thus, the DBC is commonly used to
specify fields at magnetically ground surface or in infinite
domains, where ψ can be reasonably approximated and
arbitrarily set to zero.

2) As illustrated in Fig. 1, the magnetic flux density B at
any point on the boundary surface can be decomposed
into two components: normal Bn (positive for outflow
from and negative for inflow into the working space) and
tangential Bτ . As Bτ at the boundary does not enter the
working space, thus it has no contribution to the field to be
reconstructed. The normal component of the magnetic flux
density Bn = −µ∂ψ/∂n is chosen as the NBC imposed
on the boundary for reconstructing the field. Mathemati-
cally, (3) cannot be completely solved with NBC (Bn =
−µ∂ψ/∂n) due to the undeterminable constant ψ0 . How-
ever, ψ0 is eliminated during the gradient calculation, and
does not affect the determinations of B and H according
to (2a) and (2b).

3) Without loss of generality, we assume that magnetic sen-
sors (such as a Hall sensor) are available to measure the
Bn distribution for the NBC on all the boundary surface
(except the DBC at far field where ψ = 0).

The aforementioned points shows that the magnetic field B
in a working space can be reconstructed from the measured
Bn on its boundary surface. This reconstruction method that
bases solely on the single-axis measurement greatly reduces the
complexity and cost to obtain the B field in a finite working
space.

The reconstruction method is best illustrated with examples.
Two successful applications (with validation) with different
magnetic structures are introduced in the following sections.

1) The first example is a PM-based spherical motor involving
a mixed of NBC and DBC for the reconstruction.

2) The second example is an electromagnetic flowmeter us-
ing only measured Bn data as the NBC for the whole
boundary.

In both examples, the Laplace’s equation (3) is numerically
solved for the magnetic scalar potential ψ using finite-element
method. For this, the commercial software COMSOL Multi-
physics is employed on an IBM System X3850M2 (four-way

Fig. 2. Schematics illustrating the measurement (adapted from [11]).
(a) Spherical motor. (b) Rotor with customized PMs. (c) Measuring device.

quad-core 2.4-GHz CPU, 64-GB RAM) to reach the solution
with relative tolerance of 1e−6.

III. MAGNETIC FIELD OF A SPHERICAL MOTOR

Design and control of a multiaxis electromagnetic actuator
or sensor require a good understanding of its magnetic field.
Prior research on spherical motors has focused on developing
analytical methods that offer an effective means to predict the
magnetic field for design analysis [11], [19]. For model identi-
fication or calibration, it is desired that the magnetic field of the
device can be reconstructed experimentally.

A. Experimental Setup

Fig. 2 shows the spherical rotor [11] (with eight customized-
shaped PMs evenly along the “equator” of 46.5 mm radius) of
an iron-free PM-based spherical motor. In a spherical motor
[see Fig. 2(a)], the ball-like rotor is concentrically supported
by means of a bearing inside a hollow spherical stator with
strategically positioned stator coils as EMs. Torque, which can
be calculated from the Lorenz force equation, is generated as
current inputs flow through the stator coils in the magnetic field.
As shown in [1], the Lorenz force calculation involves modeling
only the flux density B-fields of the PMs, as the current density
is directly used in the calculation. Thus, only the PM-embedded
rotor [see Fig. 2(b)] is considered here for clarity in illustrating
the reconstruction.
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Fig. 3. Calculation model.

TABLE I
BCS IN CALCULATION MODEL (SPHERICAL MOTOR)

Experimental data and analytical solutions for the system are
available in [11] and [19], and thus, this example provides a good
basis for illustration and validation. While the detailed geometry
of the PM-based spherical motor and the effect of its PM shape
on the torque performance can be found in [11] and [19], the
magnetic structure of the rotor is assumed unknown in the field
reconstruction. Along with the measurement parameters, the
setup used in measuring Br (equal to Bn on spherical surface,
which is the radial component of the magnetic flux density) in
s(r, θp , ϕp ) is shown in Fig. 2(c), where Br is measured with
a Hall probe driven by a three-axis stage. The published data
are used directly as BCs in the reconstruction; no additional
measurement was made.

B. Boundary Conditions

As shown in Fig. 3, the boundary surface is divided into four
areas with the mixed-BCs specified in Table I. The measured
Br at da = 0.5 mm (where da is the distance from the rotor
surface), as shown in Fig. 4, is imposed as a NBC on the inner
surface. A zero DBC (ψ = 0) is imposed on the outer surface
(with a radius ten times larger than that of the inner surface)
to approximate the infinite far field. The bottom surface is the
plane of symmetry, and thus, a zero NBC is imposed on it. It is
worth mentioning that as measured Bn data at the upper surface
are not available, a zero NBC is assumed as an approximation
that the magnetic field in the space θp ≥ 25◦ is relatively small.

C. Results and Discussions

With the BCs specified in Table I, (3) is numerically solved
using COSMOL. The model is meshed by 272 946 tetrahedral
elements, and 389 233 DOFs are calculated. The computation
took 224 s. The reconstructed B field is 3-D; a sample plot
characterizing the B field at the bottom surface is shown in

Fig. 4. Measured Br on the surface da = 0.5 mm used as NBC [11].

Fig. 5. Reconstructed B on the bottom surface.

Fig. 5. As expected, the field is periodic in the ϕp direction
(due to the alternate PM magnetizations), and is strongest in the
domain near the rotor surface where magnetic energy (as a media
for electrical-to-mechanical conversion) is stored in the air gaps
between PMs and stator EMs in the spherical motor [13], [20].

The approach is validated by comparing the reconstructed Br

distribution against measured data at da = 2.5 mm in Fig. 6(a)
with the differences highlighted in Fig. 6(b). The reconstructed
magnetic field well agrees with the original data (with an aver-
age maximum difference of about 3.6%) in the range of 0◦ ≤ θp

≤ 20◦; this relatively small difference could be due to the un-
avoidable Hall probe positioning errors. Primary discrepancies
are in the domain near θp = 25◦ (with a maximum error of 23%
at θp = 25◦) due to the assumption Bn = 0 at the upper surface.
Clearly, it can be greatly reduced if additional Bn measurements
are obtained on this surface. As illustrated in next example, if
all the BCs are obtainable, the reconstruction error will be quite
small.

Once the MFD is reconstructed, it can be used to compute the
torque model of the spherical motor [1], [11], and for parameter
estimation and motion control [16].
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Fig. 6. Reconstructed fields at da = 2.5 mm. (a) Comparison between recon-
structed and measured fields. (b) Computed difference.

IV. MAGNETIC FIELD OF A ELECTROMAGNETIC FLOWMETER

Fig. 7 shows an electromagnetic flowmeter, where the in-
duced voltage ∆U is a function of the flow velocity v and
the magnetic flux density B [21]. The flowmeter consists of a
measuring pipe and a magnetic unit that excites an induction
(between the electrodes as conductive liquid moves through the
magnetic field) through a pair of EMs. Through measuring the
magnitude of the induced voltage, the flow velocity can be deter-
mined from the Faraday’s law of electromagnetic induction. The
actual flowmeter consists of other components (such as yoke,
shield layer, sailing layer, and signal lead channel, not shown in
Fig. 7). However, the reconstruction of the magnetic field in the
cylindrical pipe does not require the knowledge of the magnetic
structure.

A. Measurement Setup

To provide the necessary NBC of the measuring pipe for
solving the Laplace’s equation (3), the normal component of
the magnetic flux density distribution on the boundary surfaces
is measured using a Hall probe, as shown in Fig. 8. To ensure
that the whole magnetic field is calculated, two extended cylin-
ders are added in the upstream and downstream, as illustrated
schematically in Fig. 9.

Fig. 7. Inner structure of electromagnetic flowmeter.

Fig. 8. Magnetic scanning device.

Fig. 9. Calculation models.

To automate the data collection and ensure a high measuring
accuracy, a computer-controlled scanning servomechanism is
designed to position the Hall probe on the aluminum holder:

1) Located near the end of the probe (monitored by the gauss
meter), the diameter of Hall effect area is about 1 mm.
Only the average value of the normal B component passing
through this small area is measured.

2) Controlled by a motion controller, the rotational and
translational resolutions of magnetic scanning device are
0.005◦ and 5 µm, respectively.

3) The gauss meter and motion controller along with a scan-
ning program that monitored the autoscanning procedure
are controlled by a host computer.
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TABLE II
BCS IN CALCULATION MODEL (FLOWMETER)

Fig. 10. Measured NBC, Br (θ, z) on the surface of the pipe (measuring range
θ = 0◦ to 360◦, z = 0 to 300 mm, and measuring steps ∆θ = 3◦ and ∆z =
2 mm).

With the aforementioned design, the maximum measuring
error of the readings is within ±0.20%.

B. Boundary Conditions

The boundary surface is divided into five areas, for each of
which an NBC is assigned. As listed in Table II that summarizes
the BCs, only the Br (θ, z) distribution (where the subscript
“r” denotes the radial direction normal to the pipe surface) on
the inner surface of the measuring pipe is measured. With five
measurements taken at each point, a total of 18 000 points (in
steps of ∆θ = 3◦ and ∆z = 2 mm) were measured in about
2.5 h. The measured Br distribution is shown in Fig. 10.

C. Results and Discussions

With the NBCs given in Table II, the magnetic field was
reconstructed numerically by solving (3) with (2a) and (2b),
which took 229 s to compute a solution. The model is meshed by
178 234 tetrahedral elements, and 245 483 DOF are calculated.
A sample of the reconstructed field B on the x–y plane (where
two electrodes locate) is plotted in Fig. 11. The plot shows that
the magnitude of B is smaller in the area near the electrodes,
which is a design feature of the electromagnetic flowmeter to
reduce the effect of the distorted flows.

To evaluate the reconstruction accuracy, we compare the re-
constructed By (a major effective component of B) along the
x-axis (line connecting the two electrodes) and z-axis (pipe
axis) against the experimentally measured data in Figs. 12 and
13. Within the positioning tolerance, the comparisons that show

Fig. 11. Reconstructed B at z = 150 mm (where two electrodes are located).

Fig. 12. Reconstructed fields on x-axis. (a) Comparison between reconstructed
and measured fields. (b) Computed difference.

Fig. 13. Reconstructed fields on z-axis. (a) Comparison between reconstructed
and measured fields. (b) Computed difference.
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Fig. 14. Effect of gradient-based data distribution (EMF). (a) Data distribution
(4526 points). (b) Relative error (gradient-based 4526 versus uniform 18 000)
of BC. (c) Relative error (gradient-based 4526 versus uniform 18 000 points) of
reconstructed By MFD on x- and y-axis.

excellent agreement (in the order of 0.5% difference) validate
this reconstruction approach. As expected, the smallest errors
occur at the boundary where measured data are available, and
propagate toward the center.

V. GRADIENT-BASED DATA DISTRIBUTION ON MFD

In Sections III and IV, a dense set of equally spaced measure-
ments (9360 points for the spherical motor and 18 000 points for
the electromagnetic flowmeter, respectively) was used in recon-
structing the magnetic field. These high-resolution data not only
validate the reconstruction method, but also provide a basis to
investigate the effects of data size and their distribution on the
calibration errors, as well as a basis for benchmark comparison
in the future.

Data collection is tedious, and is the most time-consuming
part of the reconstruction process. For the flowmeter (Section
IV), a single measurement took 0.5 s and the whole BC mea-
surements took 2.5 h. In contrast, the MFD computation with
FEM only used less than 4 min. In practice, it is desired that re-
construction can be performed with a small set of measurements
for specifying the BCs. The simplest way to investigate this ef-
fect is to uniformly decrease the measurements in the whole
boundary surface. However, if Bn values are relatively constant
in certain local regions, this method is inefficient since extra
data in constant Bn regions do not help to improve the overall
calibration, but simply require longer measurement time.

A better alternative is to base decisions on the gradient of
the magnetic field on the BC surface to select points for mea-
surements. In other words, points with Bn gradient value higher
than a threshold are kept, but when the gradient is smaller than
the threshold, only one in every m number of points is retained.
Additional points are calculated from measured data using inter-
polation. To best illustrate the scheme, the MFD of the flowmeter
is recomputed as a basis for comparison. The results are given
in Fig. 14.

Fig. 14(a) shows the selected 4526 points (based on a thresh-
old of 0.5 G per step and m = 3) to specify the BCs for recon-
structing the MFD, where a step is defined here as 2 mm in the z
direction and 3◦ in the θ direction. As in previous sections, color
characterizes the magnitude of Bn in Fig. 14(a). The FEM uses
the same number of points in COMSOL numerical computation
(but only 4526 of the 18 000 BC points are actually measured,
while the remaining points are interpolated with cubic inter-
polation). The error map showing the difference between the
interpolated and measured data is given in Fig. 14(b); the error
is less than 0.2 G or about 1% of local BC value. Fig. 14(c) plots
the relative errors of the reconstructed By distribution along
the x-axis and z-axis, where errors are smaller than 0.15% and
0.01%, respectively, suggesting that the small interpolated BC
errors has little effect on the reconstruction.

VI. CONCLUSION

We have presented a novel method to reconstruct the MFD in
the 3-D working space of an EMS. Unlike other methods devel-
oped for design analysis, the coupled measurement–calculation
does not require the knowledge of the magnetic structure, and
thus, provides a cost-effective means to obtain physically accu-
rate MFD outside the physical regions of the magnets.

The method, which solves the Laplace’s equation (of a mag-
netic scalar potential in the working space) with the normal
components of the magnetic flux density as BCs, has been
illustrated with two application examples: a PM-based spherical
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motor and an electromagnetic flowmeter. The method has also
been validated by comparing the reconstructed MFD against
measured data, and both comparisons show excellent agree-
ments (with maximum errors of 3.6% and 0.52% for the motor
and flowmeter, respectively).

The effect of reduced BC points on the reconstructed MFD
has been discussed. As illustrated, a nearly identical MFD (with
a relative error of less than 0.15%) can be contained illustrating
the feasibility of reduced BC points for MFD reconstruction.
This finding suggests that an effective method to select mea-
sured BC points can be based on gradient information, and
that it is desirable to develop a real-time method capable of
selecting measured points without any knowledge of the BC
morphology—an interesting but challenging research topic be-
ing explored.

The ability to reconstruct physically accurate MFDs offers
a rational basis for model validation, force/torque calculation,
system identification, and parameter estimation that are essential
for model-based motion control of a spherical motor, sensitiv-
ity prediction (dry calibration) of an electromagnetic flowmeter,
etc. The reconstruction method can be extended to other phys-
ical field-based mechatronics systems. For example, a thermal
or electrical field obeys similar governing equations (such as
Laplace and Poisson equations), and has measurable DBC and
NBC.

REFERENCES

[1] H. Son and K.-M. Lee, “Distributed multipole models for design and
control of PM actuators and sensors,” IEEE/ASME Trans. Mechatronics,
vol. 13, no. 2, pp. 228–238, Apr. 2008.

[2] D. V. Lee and S. A. Velinsky, “Analysis and experimental verification of
a three-dimensional noncontacting angular motion sensor,” IEEE/ASME
Trans. Mechatronics, vol. 13, no. 6, pp. 612–622, Dec. 2007.

[3] S. K. Cho, H. Z. Jin, J. M. Lee, and B. Yao. (2009, Mar. 4). Teleoperation of
a mobile robot using a force-reflection joystick with sensing mechanism of
rotating magnetic field, IEEE/ASME Trans. Mechatronics [Online]. DOI:
10.1109/TMECH.2009.2013848.

[4] X. Shan, S.-K. Kuo, J. Zhang, and C.-H. Menq, “Ultra precision motion
control of a multiple degrees of freedom magnetic suspension stage,”
IEEE/ASME Trans. Mechatronics, vol. 7, no. 1, pp. 67–78, Mar. 2002.

[5] M. Komori and T. Yamane, “Magnetically levitated micro PM motors by
two types of active magnetic bearings,” IEEE/ASME Trans. Mechatronics,
vol. 6, no. 1, pp. 43–49, Mar. 2001.

[6] E. H. Maslen, D. T. Montie, and T. Iwasaki, “Robustness limitations in
self-sensing magnetic bearings,” ASME J. Dyn. Syst., Meas. Control,
vol. 128, no. 2, pp. 197–203, 2006.

[7] X. Fu, L. Hu, J. Zou, H. Y. Yang, X. D. Ruan, and C. Y. Wang, “Divisionally
analytical reconstruction of the magnetic field around an electromagnetic
velocity probe,” Sens. Actuators A, vol. 150, no. 1, pp. 12–23, 2009.

[8] X. Z. Zhang and J. Hemp, “Measurement of pipe flow by an electromag-
netic probe,” ISA Trans., vol. 33, pp. 181–184, 1994.

[9] B. Horner, F. Mesch, and A. Trachtler, “A multi-sensor induction flowme-
ter reducing errors due to non-axisymmetric flow profiles,” Meas. Sci.
Technol., vol. 7, no. 3, pp. 354–360, 1996.

[10] D. M. Sousa and G. D. Marques, “Study of the air gap magnetic field
distribution of a nuclear magnetic resonance iron-core magnet,” in Proc.
IEEE Region 8 Conf. Comput. Technol. Electr. Electron. Eng. (SIBIRCON
2008), pp. 242–247.

[11] L. Yan, I.-M. Chen, G. Yang, and K.-M. Lee, “Analytical and experimental
investigation on the magnetic field and torque of a permanent magnet
spherical actuator,” IEEE/ASME Trans. Mechatronics, vol. 11, no. 4,
pp. 409–419, Aug. 2006.

[12] L. Hu, J. Zou, X. Fu, Y. H. Yang, X. D. Ruan, and C. Y. Wang, “A
reconstruction approach to determining the magnetic field around an elec-
tromagnetic velocity probe,” Meas. Sci. Technol., vol. 20, pp. 015103-1–
015103-7, 2009. DOI:10.1088/0957-0233/20/1/015103.

[13] K.-M. Lee and C.-K. Kwan, “Design concept development of a spherical
stepper for robotic applications,” IEEE Trans. Robot. Autom., vol. 7, no. 1,
pp. 175–181, Feb. 1991.

[14] W. Wang, J. Wang, G. W. Jewell, and D. Howe, “Design and control
of a novel spherical permanent magnet actuator with three degrees of
freedom,” IEEE/ASME Trans. Mechatronics, vol. 8, no. 4, pp. 457–468,
Dec. 2003.

[15] K.-M. Lee, K. Bai, and J. Lim, “Dipole models for forward/inverse torque
computation of a spherical motor,” IEEE/ASME Trans. Mechatronics,
vol. 14, no. 1, pp. 46–54, Feb. 2009.

[16] K.-M. Lee, R. A. Sosseh, and Z. Wei, “Effects of the torque model on the
control of a VR spherical motor,” IFAC Control Eng. Practice, vol. 12,
no. 11, pp. 1437–1449, 2004.

[17] D.-H. Kim, S.-H. Lee, I.-H. Park, and J.-H. Lee, “Derivation of a general
sensitivity formula for shape optimization of 2-D magnetostatic systems
by continuum approach,” IEEE Trans. Magn., vol. 38, no. 2, pp. 1125–
1128, Mar. 2002.

[18] K. P. Prokopidis, N. V. Kantartzis, and T. D. Tsiboukis, “Performance
optimization of the PML absorber in lossy media via closed-form expres-
sions of the reflection coefficient,” IEEE Trans. Magn., vol. 39, no. 3,
pp. 1234–1237, May 2003.

[19] L. Yan, I.-M. Chen, C.-K. Lim, G. Yang, W. Lin, and K.-M. Lee, “Design
and analysis of a permanent magnet spherical actuator,” IEEE/ASME
Trans. Mechatronics, vol. 13, no. 2, pp. 239–248, Apr. 2008.

[20] K.-M. Lee, R. Roth, and Z. Zhou, “Dynamic modeling and control of a
ball-joint-like VR spherical motor,” ASME J. Dyn. Syst., Meas. Control,
vol. 118, no. 1, pp. 29–40, 1996.

[21] J. A. Shercliff, The Theory of Electromagnetic Flow-Measurement.
Cambridge, U.K.: Cambridge Univ. Press, 1962.

Liang Hu received the B.Eng. degree in 2004 from
the Department of Mechanical Engineering, Zhejiang
University, Hangzhou, China, where he is currently
working toward the Ph.D. degree.

His current research interests include flow mea-
surement and instrumentation, and measurement and
computation of magnetic field.

Kok-Meng Lee (M’89–SM’02–F’05) received the
B.S. degree from the State University of New York,
Buffalo, in 1980, and the S.M. and Ph.D. de-
grees from Massachusetts Institute of Technology,
Cambridge, in 1982 and 1985, respectively.

He is currently a Professor in the Woodruff
School of Mechanical Engineering, Georgia Institute
of Technology, Atlanta. His current research inter-
ests include system dynamics/control, robotics, au-
tomation, and mechatronics. He holds eight patents
in machine vision, 3-DOF spherical motor/encoder,

and live-bird handling system.
Prof. Lee is a Fellow of the American Society of Mechanical Engineers.

He received the National Science Foundation Presidential Young Investigator
Award, the Sigma Xi Junior Faculty Research Award, the International Hall of
Fame New Technology Award, and the Kayamori Best Paper Award.

Xin Fu received the B.Eng. degree from Chengdu
University of Science and Technology, Chengdu,
China, in 1982, the M.Eng. degree from Southwest
Agricultural University, Chongqing, China, in 1990,
and the Ph.D. degree from the University of Leoben,
Leoben, Austria, in 1999.

Since 1999, he has been with Zhejiang University,
Hangzhou, China, where he was the Director of the
State Key Laboratory of Fluid Power Transmission
and Control from 2005 to 2009 and is currently a
Professor and the Vice-Dean of the Department of

Mechanical Engineering. His current research interests include microfluidic
technology, simulation and visualization of flow field, fluid vibration and noise
control, and flow measurement and instrumentation.


